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Executive Summary 
Fires can cause costly property damages and significant economic losses. They are also a major 
source of severe injury and loss of human life in our urban and rural communities. 

Historical data of fire incidents can reveal patterns of fire incidents. The national fire 
information database (NFID) contains historical data of fire incidents across the country and 
related injuries and deaths from 2005 to 2015.  

The objective of this research is to discover the possible underlying causes from data in the 
NFID and create quantitative models to evaluate and assess fire safety risks. Specifically, the 
research focuses on investigating the key factors to affect the likelihood or intensity of fire 
incidents and addressing the firefighter safety issue related to fire incidents. Statistical analysis 
and machine learning algorithm are applied in this research. 

The research yields three conclusions. Firstly, we identify eight factors: Firefighter - Helmet 
Worn At Time of Injury, Firefighter - Helmet Line Used At Time of Injury, Firefighter - Coat 
(Turnout) Worn At Time of Injury, Firefighter - Boots Worn At Time of Injury, Fire Fighting 
Years of Experience, Age of Victim, Height Firefighter, Weight Firefighter, as main influential 
factors on firefighter injuries; Secondly, eighteen factors: Initial detection, Building height, 
Ground floor area, Major Occupancy Group, Energy causing ignition (form of heat), Fuel or 
energy associated with igniting object, Act or Omission Group, Material First Ignited Group, 
Sprinkler protection, Manual fire protection facilities, Area of Origin Group, Igniting Object 
Group, Level of Origin, Automatic fire detection system, Number of occupants,  Property 
Classification Group, Action taken, Method of Fire Control & Extinguishment Group, are found 
as main influential factors on fire incidents; Finally, relative importance of the factors in 
relation to spreading fires are provided. 
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Introduction 

Fires can cause costly property damages and significant economic losses. They are also a major 
source of severe injury and loss of human life in our urban and rural communities.  

On June 14, 2017, a fire flared up in the Grenfell Tower located in North London around 
midnight. The London Fire Brigade rapidly responded and dispatched 200+ firefighters with 
40+ fire engines to the fire scene to carry out rescue mission. Despite attending within six 
minutes after receiving the first call and succeeding multiple rescues of 65 persons, it could not 
prevent the fire from developing into a disaster. According to media reports, the tragedy 
caused 71 counts loss of life, including known deaths and missing presumed dead.  

 

1.1 FIRE INCIDENTS IN NORTH AMERICA  

In 2016, there were 1,342,000 fires reported in the United States. These fires caused 3,390 
civilian deaths, 14,650 civilian injuries, and $10.6 billion economic losses in property damage. 
Recent historical fire incidents information can be found in the table below: 

Table 1   U.S. Fire incidents (2006~2015) 

  Total 
Estimated $ 

Loss 
(billion) 

Number of 
Loss Fires 

(000) 

Residential 
Fire 
Injuries 

Residential 
Fire Deaths 

Residential 
Estimated $ 

Loss 
(million) 

2015 $14.30  380.9 11,475 2,565 $7,099  
2014 $11.60  379.5 12,075 2,765 $6,909  
2013 $11.50  380.3 12,450 2,755 $6,996  
2012 $12.40  374.0 13,050 2,385 $7,333  
2011 $11.70  364.5 13,900 2,450 $7,009  
2010 $11.60  362.1 13,275 2,555 $7,225  
2009 $12.50  356.2 12,600 2,480 $8,021  
2008 $15.50  378.2 13,100 2,650 $8,831  
2007 $14.60  390.3 13,525 2,765 $8,182  
2006 $11.30  392.7 12,550 2,490 $7,813  

Source: US Fire Administration & FEMA (December 2017) 

In Ontario, the most populous province of Canada, 10,951 loss fires, with 860 related injuries 
and 94 fatalities, were reported in 2015. Estimated economic loss caused by the fires was 
approximately $730.5 million. National level statistics of fire incidents is unavailable.  

Table 2   Ontario Fire incidents (2006~2015) 

  Number of 
loss fires 

Fire 
Injuries 

Fire 
fatalities  

Estimated $ 
loss in 

millions 
No loss fires  

2015 10,951 860 94 $730.50  9,679 
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2014 10,632 814 80 $862.00  8,090 
2013 10,730 784 79 $639.50  8,433 
2011 11,501 779 86 $632.90  10,108 
2010 12,850 859 79 $585.60  11,479 
2009 12,945 872 97 $642.60  11,022 
2008 13,151 649 99 $570.50  8,754 
2007 14,310 836 92 $549.40  12,711 
2006 13,773 736 81 $444.90  12,119 

Source: Ontario Ministry of Community Safety and correctional Services 

An important but less reported fire related loss is firefighter injuries on-duty. Firefighters’ job 
tasks are physically demanding. They are often exposed to hazardous work conditions, which 
cannot be imagined by ordinary citizens, such as an explosion when carrying out a rescue or a 
multiple vehicle crash on the way to a fire scene. Firefighters face a relatively high chance of 
being injured, possibly killed on the job. They may suffer a variety of injuries, including 

• physical injury due to extreme heat, falling objects, or vehicular, 
• chemical injury due to carbon monoxide,  
• biological injury due to infectious disease,  
• ergonomic injury due to heavy lifting or awkward postures, and 
• psychological injury due to stress. 

Table 3 illustrates the historical statistics of firefighter injuries in the United States. 

 

Table 3   Total Firefighter Injuries at the Fireground, and at  
Non-fire Emergencies (1981-2016) 

Year 
Total 

Firefighter 
injurie 

Injuries at 
the 

Fireground 

Injuries per 
1,000 Fires 

Injuries at 
Non-fire 

Emergencies 

Injuries per 
1,000 

Incidens 

1981 103,340 67,500 23.3 9,600 1.24 
1982 98,150 61,400 24.2 9,385 1.17 
1983 103,150 61,700 26.5 11,105 1.29 
1984 102,300 62,700 26.8 10,600 1.21 
1985 100,900 61,300 25.9 12,500 1.38 
1986 96,540 55,900 24.7 12,545 1.30 
1987 102,600 57,755 24.8 13,940 1.41 
1988 102,900 61,790 25.4 12,325 1.13 
1989 100,700 58,250 27.5 12,580 1.11 
1990 100,300 57,100 28.3 14,200 1.28 
1991 103,300 55,839 27.3 15,065 1.20 
1992 97,700 52,290 26.6 18,140 1.43 
1993 101,500 52,885 27.1 16,675 1.25 
1994 95,400 52,875 25.7 11,810 0.84 
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1995 94,500 50,640 25.8 13,500 0.94 
1996 87,150 45,725 23.1 12,630 0.81 
1997 85,400 40,920 22.8 14,880 0.92 
1998 87,500 43,080 24.5 13,960 0.82 
1999 88,500 45,500 25.0 13,565 0.76 
2000 84,550 43,065 25.2 13,660 0.73 
2001 82,250 41,395 23.9 14,140 0.73 
2002 80,800 37,860 22.4 15,095 0.77 
2003 78,750 38,045 24.0 14,550 0.70 
2004 75,840 36,880 22.1 13,150 0.62 
2005 80,100 41,950 26.2 12,250 0.56 
2006 83,400 44,210 26.9 13,090 0.57 
2007 80,100 38,340 24.6 15,435 0.65 
2008 79,700 36,595 25.2 15,745 0.66 
2009 78,150 32,205 24.1 15,455 0.62 
2010 71,875 32,675 24.5 13,355 0.50 
2011 70,090 30,505 22.0 14,905 0.50 
2012 69,400 31,490 22.9 12,760 0.42 
2013 65,880 29,760 24.0 12,535 0.41 
2014 63,350 27,015 20.8 14,595 0.48 
2015 68,085 29,130 21.6 14,320 0.44 
2016 62,085 24,325 18.1 12,780 0.38 

Source: NFPA Survey of Fire Departments for U.S. Fire Experience (1981-2016). 

 

1.2 FIRE RISK AND DATA  

Majority of the loss fires are building fires, or structural fires in professional term. The 
challenge to reduce the loss fire incidents and minimize their negative impact is that nobody 
can predict exactly when or where a fire will occur, under what conditions, and who will be at 
risk. Most buildings allow a generally tolerable level of fire performance. Therefore, risks of life 
safety or financial loss might exist in any given building due to some unknown or unacceptable 
attributes of its structure or its occupants.  

One way to determine whether such a potential exists is by undertaking a fire risk assessment 
of the building or facility. Fire risk assessment is a very important part of fire prevention and 
safety management. A crucial element of fire risk assessment is to identify main influential 
factors that are more prone to start a fire or spread fast to other areas from its origins. Fire risk 
assessment also evaluates likelihood and severity of damages or injury, and even life loss might 
be caused by these risk related factors. 

Historical data of fire incidents can reveal patterns when and how potential and hazardous 
sources can lead or intensify fires. In Canada, fire incidents data has been collected throughout 
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the country for years and it has been serving as worthy references for fire safety authority and 
professionals to protect local communities. However, the data was not standardized among 
various jurisdictions nor in centralized national depository. 

The Canadian Association of Fire Chiefs (CAFC), teaming up with the Canadian Council of Fire 
Marshalls and Fire Commissioners (CCFM&FC) implemented the national fire information 
database (NFID) in 2017. The database (NFID) project funded by the Canadian Safety and 
Security Program (CSSP), a federal program led by Defense Research and Development 
Canada’s Centre for Security Science, in partnership with Public Safety Canada. 

The NFID consolidates currently available data across the country. It contains historical data of 
fire incidents and related injuries and deaths from 2005 to 2015. Although there are 
limitations, such as incomplete coverage and underreporting and relatively high proportion of 
missing data or unknown values, the NFID constitutes a starting point and foundation for 
enhanced understanding of fire and safety risks on a nationwide basis, which allows evidence 
informed policy improvements and best practice in fire risk management. The NFID enables 
analytics approaches for investigating and identifying main influential factors that affect fire 
incidents and fire related injuries and losses. 

 

1.3 RESEARCH APPROACH  

Traditionally, research on fire incidents data was relatively qualitative in nature, partly due to 
data availability and standardization. It often combines with simple statistics such as 
frequencies and percentages presented in tables and charts. Significances and implications of 
such research outcomes highly depended on interpretations, which could yield inconsistent 
conclusions. Since NFID provides large quantity of standardized data of fire incidents, our 
research adopts quantitative approach to analyze the data. 

There are two main approaches to perform data analytics, statistical analysis and machine 
learning. Although the methodologies are different, both retain their common objective, 
learning from data. Statistical analysis is a collection of quantitative methods of evaluating and 
estimating data in order to interpret the underlying relationships and causes and further to 
make inference on patterns and trends from the data. Machine learning is a branch of artificial 
intelligence and possesses a variety of data ‘learning’ methods. Machine learning methods 
analyze data to discover latent patterns that can be later used to process new data. The pattern 
discovery process relies on specific representation of data, a set of “features” that can be 
understood by a computer program.  

In this project, we adopt both statistical analysis approach including correlation analysis, factor 
analysis, and machine learning approach including clustering and neural networks to carry out 
the analytics research. 
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1.4 RESEARCH OBJECTIVE  

The objective of this research is to discover the possible underlying causes from given data and 
create quantitative models to evaluate and assess fire safety risks. The proposed methodology 
is positioned to resolve the following challenges: 

• investigate the key factors to affect the likelihood or intensity of fire incidents, i.e., 
identifying the factors that have most contributed to the fire incidents. Such 
identification process requires assessing the impact of building codes, occupants or 
residents of structure on fire incidents and examining the influence of the factors of the 
fire incidents to spread or intensify the fires 

• address the firefighter safety issue related to fire incidents 
• explore the relationship between fire risk and particular populations or locations 

The report is organized as follows: Section 2 presents a literature review on fire study globally; 
Section 3 gives a formal introduction of the proposed methodology; Section 4 summarizes the 
data and discusses the results and Section 5 concludes this report. 

Literature review 

Many researchers have done research in fire related field. Some have focused on a 
comprehensive fire risk assessment. Lau, Lai, Lee and Du [1] proposed a fire risk scorecard 
based on a scoring system used in banking and insurance industry. The fire risk of each 
industrial and non-industrial building is assessed and its risk level is identified by the paper. 
The authors applied Analytic Hierarchy Process (AHP) to determine the weights for the 
different fire risk factors. The machine learning method, Support Vector Machine, was 
introduced in order to verify the model. Real data were also used to validate the proposed 
method.  

Asgary,  Sadeghi-Naini, and Levy [2] applied supervised version of Self-Organizing Map (SOM) 
to classify and assess the risk levels of structural fire incidents. A SOM is a popular example of 
unsupervised neural networks, an artificial intelligence technique. The authors defined five fire 
risk levels from very low (VL) to very high (VH) according to a set of criteria in order to classify 
the fire incidents. Seven years (2000~ 2006) of Toronto data related to structural fire incidents 
were used to validate the proposed model. They claimed that their proposed model could be 
used not only for improving fire safety and protection of existing and future structures, but also 
for enhancing emergency responses to future fire incidents. The availability of past fire 
incidents data is one of the necessary conditions for predictive fire risk assessment models. 

Vadrevu, Eaturu, and Badarinath [3] applied AHP with fuzzy logic to rank and prioritize the 
causative factors of fire risk in south India. The satellite remote sensing datasets, topographic, 
vegetation, climate, and socioeconomic datasets are used in this study. The authors quantified 
the fire risk in the study area as a function of topographic, vegetation, climatic, and 
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socioeconomic attributes. In order to infer fire risk, the authors introduced linguistic variables 
in fuzzy classification.  

Some researchers have explored the relationship between fire risk and particular populations 
or locations. Harpur, Boyce, and McConnell [4] presented their analysis on young children 
fatalities in dwelling fires. They examined coronial reports over 11-year period and gathered 
both abundance of detailed qualitative information and rich quantitative data. They took an in-
depth and comprehensive look at aspects of these fires as well as the relevant demographics, 
households, lifestyles and behaviors. Their analysis identified the most common cause of fatal 
dwelling fires involving very young children and two other contributory factors. The authors 
claimed that their research had taken an important step forward in identifying risk factors and 
risky behaviors which could be used to inform education and intervention strategies.  

Duncanson, Woodward, and Reid [5] conducted a study funded by the New Zealand Fire 
Service Commission. The study investigated the relationship between socioeconomic 
deprivation and risk of an unintentional fatal domestic fire incident. The study used New 
Zealand fire mortality data from the New Zealand Fire Service Fire Information Recording 
System (FIRS) for the period July 1993 to June 1998. The method was an analysis based on the 
calculation of total fatal domestic fire incident occurrences in geographic meshblocks. Their 
study showed a clear gradient of increasing rates of unintentional fatal domestic fire injury in 
New Zealand with increasing social and economic deprivation at census meshblock level. The 
study suggested that further local research was necessary to identify barriers to household fire 
safety in relatively socioeconomically deprived communities, as well as barriers in population 
groups.  

Jennings [6] conducted a literature review on social, economic, and building stock 
characteristics as they related to residential fire risk in urban neighborhoods. The paper 
suggests that mixed research methods are needed for further research. Specifically, rich case 
studies, and descriptive studies of fire loss patterns and resident characteristics remained 
important to illuminate local dynamics of the fire problem and identify potential variables 
useful in future quantitative studies. The paper further suggests that the most promising and 
unrealized need for research is in undertaking holistic studies of neighborhood conditions 
simultaneously, using sophisticated analytic techniques, and truly engaging multidisciplinary 
perspectives.  

Hastie and Searle [7] published a paper that details an analysis of fire service data, which 
sought to establish how accidental dwelling fires are distributed through different sectors of 
society and to identify socio-economic and demographic factors, which are associated with 
higher rates of dwelling fire. Their analysis applied statistical methods, principal component 
analysis (PCA) and ordinary least squares regression, to develop a model that explains around 
one third of the variance in rates of fire at small neighborhood level using just three predictor 
variables. The authors used fire incidents data provided by the West Midlands Fire Service and 
National Statistics and Ordnance Survey data governed under the UK Open Government 
License. Their study confirmed that the ethnic make-up of an area and the economic 
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deprivation present in an area are strongly indicative of rates of fire. In addition, it revealed a 
clear, and un-reported, link to the proportion of single people in middle age groups living in an 
area. This was an insight that is of considerable value to fire services, made all the more 
important by the fact that this latter group is growing in numbers in the UK. The author 
claimed that the findings of their study would help fire services to improve the targeting of fire 
safety interventions and to focus on those neighborhoods and communities where 
interventions were most needed and have the greatest potential to reduce both response 
demand and inequality. The findings also have value in helping plan the location of emergency 
response resources. 

Another research direction focuses on fire fighters. Cloutier and Champoux [8] studied the risk 
faced by fire fighters and analyzed relationships between age and the characteristics of 
accidents involving firefighters. Their study used data extracted from the reports filed for the 
1041 occupational accidents suffered by firefighters in two large Quebec municipalities during 
1992. The research method was qualitative in nature. The conclusions of their study suggested 
that further research on the real work tasks of firefighters is necessary. Such study should 
focus on the effect of the most common and most onerous environmental, organizational and 
other constraints. Their study also indicated the need to focus attention on the transmission of 
expertise and the learning of individual and collective compensatory strategies among 
firefighters.  

Britton, Lynch, Torner, and Peek-Asa [9] aimed to identify fire-related factors associated with 
injury. The authors studied the data provided by the National Interagency Fire Center in USA 
from 2003 to 2007.  They used epidemiologic methods to expand on previous descriptive 
studies. Their results indicated that complexity of the fire is related to firefighter injury and the 
more complex fires had a lower injury incidence rate than less complex fires. Their finding 
could provide a basis for specific injury prevention strategies and for the evaluation of injury 
prevention efforts. In addition, the authors also concluded that the more experienced and 
specialized firefighting teams had lower injury incidence.  

Rosalky, hostler, and webb [10] examined the effect of work duration on hormonal and 
affective stress responses in a sample of healthy, experienced firefighters. 42 apparently 
healthy firefighters completed all components of the study. Their study suggested that work 
duration appears not to have an effect on hormonal or affective stress response to fire 
suppression. 

 

Methodology  

In this section, we propose to integrate the statistical and machine learning approaches to 
investigate the key factors to affect the likelihood or intensity of fire incidents and firefighter 
safety. In the meanwhile, the proposed research also aims to explore the relationship between 
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fire risk and particular populations or locations.  The concept and implementation are 
described in the following subsections.  

 

3.1 IDENTIFY MAIN INFLUENTIAL VARIABLES ON SPREAD OF FIRES  

The main analytics method we propose to apply is principle components analysis (PCA) [11]. 
PCA is used to identify main influential variables that have significant impact on firefighter 
injuries in fire incidents.  

PCA is a statistical technique that transforms a set of observations of possibly correlated 
variables into a set of values of linearly uncorrelated variables. The new sets of variables, 
usually fewer, are called principal components.  

SPSS program is used as primary computing tools to produce desired results and SAS program 
is used to verify the results. 

Data extraction, transformation and loading process is an essential step before effective 
analysis can be performed. The provided dataset of victims contains records of both civilian 
injuries and firefighter injuries. Our focus for this part is on firefighter injuries. Therefore, 
extracting data of firefighter injuries from the dataset is a necessary step. We also use the 
following procedures to transform the data: 

• Convert variables from text format into numeric format; 
• Examine data for its validity and eliminate all invalid data; and 
• Substitute missing values with best possible estimations. 

 

3.2 IDENTIFY MAIN INFLUENTIAL VARIABLES ON FIRE INCIDENTS  

The analytics method we propose to apply for this objective is also PCA. Preliminary processing 
of the incidents data indicates that 

• the data from three jurisdictions are of better quality than the data from other 
jurisdictions; and  

• the data about residential buildings are of better quality than the data about other 
structures, such as vehicles. 

Based on these observations, we decide to focus on structural fire incidents in residential areas.  

Following the same logic described in section 3.1, we do text-to-numeric conversion and 
missing value substitution. 
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3.3 IDENTIFY MAIN INFLUENTIAL VARIABLES ON SPREAD OF FIRES  

The analytics method applied for this purpose is artificial neural networks (ANN) [12]. 
Artificial neural networks (ANNs) are computing systems inspired by the biological neural 
networks that constitute animal brains. Such systems learn (progressively improve 
performance on) tasks by considering examples, generally without task-specific programming. 
We use ANN to understand the relationships between the selected variables of the fire 
incidents data and spreading of fires. 

An important advantage of ANN is that it does not assume the linear relationship.  It can 
analyze data in which non-linear influences exist without a priori knowledge of what those 
non-linear influences should look like and further approximate the actual non-linear functions. 

In order to perform ANNs, we create a new variable Spread (spread of fires) as the dependent 
variable. The variable Spread is a binary variable with value of either one or zero. The value 
zero represents the situations that the fires were contained within or near the origins of the 
fire incidents while the value one represents the situations that the fires spread to other areas. 

We use MATLAB as primary computing platform to program ANNs for the desired analytics 
results and use python program to verify the results. 

Data extraction, transformation and loading process is essentially similar to the Section 3.1. 

 

Results and Discussions  
 
4.1 DATA OVERVIEW  

The data used in this study comes from the national fire information database (NFID). The 
Canadian Association of Fire Chiefs (CAFC), teaming up with the Canadian Council of Fire 
Marshalls and Fire Commissioners (CCFM&FC) implemented the NFID in 2017. The NFID 
database project was funded by the Canadian Safety and Security Program (CSSP), a federal 
program led by Defense Research and Development Canada’s Centre for Security Science, in 
partnership with Public Safety Canada. 

The NFID contains two datasets, incident dataset and victim dataset. It contains historical data 
of fire incidents and related injuries and deaths from 2005 to 2015. The information is from 
seven jurisdictions: New Brunswick, Ontario, Manitoba, Saskatchewan, Alberta, British 
Columbia and the Canadian Armed Forces. Social domain data from Statistics Canada were 
added to the dataset. 

The incident dataset contains 467,929 records and each record has 136 variables, which are 
affiliated with the following categories: 

• Incident Information (24) 
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• Property Description (7) 
• Property Details (9) 
• Fire Protection Features (8) 
• Circumstances Contributing to the Outbreak of Fire (8) 
• Factors Relating to the Origin and Spread of Fire (7) 
• Fire Loss Details (5) 
• Discovery of Fire and Actions Taken (12) 
• Other Social Domain Data (56) 

The victim dataset contains 15,326 records and each record has 31 variables. The information 
is about injuries and deaths of firefighters and civilians related to fire incidents. 

Data quality assessment was performed prior to our analytics. Since our focus is primarily on 
the characteristics of residential fires and related injuries, records about other structural 
incidents are excluded from further analysis. 

There exists relatively high proportion of missing values for some variables. We ran missing 
value analysis on all variables. Table 4 below provides the information on missing values for 
seven variables, from variable 13 to variable 19 in the incident dataset. 

  

RESPONSE 
TIME OF 

SUBSEQUENT 
VEHICLES 

SUBSEQUENT 
CREW SIZE 

NUMBER 
OF 

ENGINES 

NUMBER 
OF 

AERIALS 

NUMBER 
OF 

TANKERS 

NUMBER 
OF CFR 

VEHICLES 

DISTANCE 
FROM FIRE 

DEPARTMENT 
TO 

EMERGENCY 

N 
Valid 116 236,540 152 11 49 67 235,955 

Missing 467,813 231,389 467,777 467,918 467,880 467,862 231,974 

Table 4    Example Variables of Missing Values 

As we can observe from the table, the following four variables have high proportion of missing 
values: 

• RESPONSE TIME OF SUBSEQUENT VEHICLES (99.98% missing values) 
• NUMBER OF AERIALS (99.97% missing values) 
• NUMBER OF TANKERS (99.99% missing values) 
• NUMBER OF CFR VEHICLES (99.99% missing values) 

These four variables will be excluded from our analysis in the data validation process due to 
the large number of missing values. 

According to the Canadian Centre for Justice Statistics, a number of the variables in the NFID 
contain a relatively high proportion of “unknown” values. This posed a challenge in the analysis 
and interpretation of the data in the preparation of the analytical report in that “unknown” 
values create an underestimate in the “known” values [13]. 

We ran statistical analysis on all variables for “unknown” values. Table 5 below summarizes 
“unknown” values of the variable ILLEGAL USE OF BUILDING. From this table, we can observe 
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that the total percentage of cases with value ‘8’ or ‘9’ is 50.4%. According to the data dictionary, 
the value 8 represents ‘Not Applicable’ and the value 9 represents ‘Unknown’. In addition, we 
notice that there are 49.6% cases labeled ‘Valid’ with no specified value. Further examining the 
variable, we find that values for cases are ‘.’, which is considered as ‘valid’ by the system. This 
causes the fact that the total percentage of ‘unknown’ or invalid cases is almost 100%.  

ILLEGAL USE OF BUILDING 

  Frequency Percent Valid 
Percent 

Cumulative 
Percent 

Valid 

  231,974 49.6 49.6 49.6 

1 113 0.0 0.0 49.6 

2 6 0.0 0.0 49.6 

3 36 0.0 0.0 49.6 

4 164 0.0 0.0 49.6 

8 45,791 9.8 9.8 59.4 

9 189,845 40.6 40.6 100.0 

Total 467,929 100.0 100.0   

Table 5    Example Variable of ‘Unknown’ Value 

We treat “unknown” values as missing values and exclude such variables from our analysis.  

Additionally, we perform the following analysis to examine the two datasets: 

• Consistency among jurisdictions (The quality of some jurisdictions are better.) 
• Outliers (Some numeric fields contain extreme values, which may or may not be valid.) 
• Duplicate “keys” or duplicate cases (A unique key is required in order to link between 

the incident dataset and the victim dataset.) 

 

4.2 MAIN INFLUENTIAL VARIABLES ON FIREFIGHTER INJURIES  

Our objective is to identify the main influential factors that have impact on firefighter injuries 
based on the victim dataset, which has 15,326 records in total with 36 variables.  

Data Validation and Extraction 

The source data is validated to ensure the accuracy of the results. Two types of data tests 
including missing data tests and duplicate records test are applied in this study. The missing 
data tests were performed on 36 variables.  

The duplicate record validation test was performed on variable LINK_ID and the result is 
presented in Table 6. The result indicates that although there is no missing value for the 
variable (LINK_ID), there were 4,013 duplicate records, about 26.2% of the total records in the 
dataset. These duplicate records were excluded for further analysis. 
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  Cases Percent Cumulative 
Percent 

Missing 0 0.0 0.0 
Duplicate 4,013 26.2 26.2 

Primary 11,313 73.8 100.0 
Valid Total 15,326 100.0   

Table 6    Missing Key Validation Result 

The victim dataset contains fire incident related injury records of both firefighters and civilians. 
Altogether 2,439 records related to firefighter injuries are extracted for our analysis.  

Kaiser-Meyer-Olkin Test  

The Kaiser-Meyer-Olkin (KMO) test is performed to see whether the dataset is suitable for 
variable analysis. The test result is 0.867. According to Kaiser [14], the test result in 0.80s is 
meritorious and the test result in 0.90s is marvelous. Based on his measurement scale, our 
KMO result is between meritorious and marvelous. The KMO test indicates that the data is 
suitable for the variable analysis and the sample size is adequate. 

Bartlett's Test of Sphericity 

The assumption of our analysis is that the some variables in our dataset are correlated so that 
the number of the variables can be reduced. Bartlett's test [15] was performed on the dataset 
to see if the data samples have equal variances. The test yields the statistical significance of 
0.000, which strongly indicates that the number of variables can be reduced in the dataset 
without losing information. 

Eigenvalue Calculation for Variances 

We calculate the eigenvalue for variances for key components identification and extraction. 
Among 36 variables, some variables, such as LINK_ID, INCDNTID, JURIS, YEAR, do not provide 
information for possible causes of injuries. These variables were excluded from the analysis. 
The remaining variables are all placed into variance computation so that the data can provide 
maximum information. The total number of the relevant variables is 25 and their variances are 
computed. Table 7 lists the eigenvalues, variance (%) and cumulative variance (%) of all 25 
relevant variables sorted by their eigenvalues. 

By examining Table 7, we observe that the eigenvalues of the last three variables (on the 
bottom of Table 7) are extremely small and contribute very little to the variance explained. 
They can be removed from further considerations. In fact, the bottom ten variables can be 
removed if 95% variance explanation is satisfactory. 

Further examining Table 7 gives us more information on the eigenvalues and the variances 
explained. The top three variables in eigenvalues contribute majority (>57%) to the total 
variance explained. Their eigenvalues are much larger than those of the rest on the list. This 
suggests these three variables should be selected in this variance reduction process. 
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The Scree plot is generated to validate this assessment (Fig 1). 

 

Variables 
Initial 

Eigenvalues % of Variance Cumulative % 
1 5.732 22.927 22.927 
2 4.401 17.604 40.531 
3 4.167 16.67 57.201 
4 1.499 5.997 63.198 
5 1.163 4.653 67.851 
6 1.137 4.548 72.4 
7 0.934 3.734 76.134 
8 0.902 3.608 79.742 
9 0.813 3.253 82.995 

10 0.717 2.866 85.861 
11 0.663 2.651 88.512 
12 0.602 2.409 90.921 
13 0.474 1.896 92.817 
14 0.404 1.615 94.432 
15 0.37 1.48 95.913 
16 0.281 1.125 97.038 
17 0.234 0.936 97.974 
18 0.21 0.84 98.815 
19 0.16 0.639 99.454 
20 0.064 0.256 99.709 
21 0.048 0.192 99.901 
22 0.025 0.099 100 
23 7.29E-14 2.92E-13 100 
24 -1.47E-14 -5.90E-14 100 
25 -1.05E-13 -4.20E-13 100 

Table 7   Total Variance Explained I 

Fig 1 shows that the “elbow” is at four on x-axis, which further validates that three is an 
appropriate choice for number of components in this variance reduction process. 
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Fig 1    Scree Plot of 25 Components (Victim Dataset) 

From Table 8, we can see that the correlations of the chosen three components are 0.027, 
0.056, and 0.052 respectively. The correlations coefficients indicate that these three 
components are not correlated significantly. 

Component 1 2 3 
1 1 0.027 0.056 
2 0.027 1 0.052 
3 0.056 0.052 1 

Table 8    Component Correlation Matrix I 

Analysis of both component variances and component correlation indicates that the three 
components solution is acceptable. Since each component loads five variables, we reduce the 
number of variables from 25 to 15. We re-compute the variances of these fifteen variables. 
Table 9 lists the eigenvalues, variance (%) and cumulative variance (%) of these fifteen 
variables ranked by their eigenvalues. 

In order to select the optimal number of components, we did the following analysis: 



 
20  

1. Table 9 indicates that two is an optimal choice. From the Table 9, we can observe that 
the top two components contribute to most variance (total cumulative variance > 64 %) 
and their individual contributions are much greater than other components; 

2. The sharp turn of the curve in Fig 2 clearly indicates that two is an optimal choice for 
the number of principle components; 

3. We run parallel PCA test of Monte Carlo simulation (Table 10) and compare the 
eigenvalues generated in the simulation to the relevant eigenvalues in the Table 9. 

Component Eigenvalues % of 
Variance Cumulative % 

1 5.682 37.879 37.879 
2 3.965 26.433 64.312 
3 1.007 6.715 71.027 
4 .961 6.405 77.432 
5 .811 5.409 82.841 
6 .661 4.408 87.249 
7 .480 3.198 90.447 
8 .393 2.619 93.065 
9 .286 1.904 94.969 

10 .242 1.616 96.585 
11 .212 1.414 97.999 
12 .162 1.078 99.077 
13 .065 .430 99.507 
14 .049 .328 99.835 
15 .025 .165 100.000 

Table 9     Total Variance Explained II 

By comparing eigenvalues in the Table 9 with the random eigenvalues in the Table 10, we 
observe that in the first pair, 5.682 is greater than 1.1331. Thus, Component #1 is accepted. In 
the second pair, 3.965 is greater than 1.1054. Component #2 is also accepted. In the third pair, 
1.007 is less than 1.0833. Component #3 and beyond are rejected. The Monte Carlo simulation 
for parallel PCA test validates that two principle components are the optimal choice in this 
case. 

Number of variables:     15 
Number of subjects:    2439 
Number of replications: 100 

Number 
Random 

Eigenvalue 
Standard 

Dev 
1 1.1331 0.0157 
2 1.1054 0.0131 
3 1.0833 0.0108 
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4 1.0635 0.0102 
5 1.0468 0.009 
6 1.0305 0.0075 
7 1.0147 0.0073 
8 0.998 0.0078 
9 0.9822 0.0081 

10 0.9673 0.0074 

Table 10   Monte Carlo simulation for Parallel PCA test 

 

Fig 2    Scree Plot of 15 Components (Victim Dataset) 

As the final step of the examination, the correlation of these two components is calculated. The 
result is shown in Table 11. The correlation coefficient (0.043) indicates that these two 
principle components are not correlated significantly. This validates the two principle 
components. 

Component 1 2 
1 1 0.043 
2 0.043 1 
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Table 11     Component Correlation Matrix II 

The structure matrix of the two components is presented in Table 12. 

  
Component 
1 2 

Firefighter- Helmet Worn At Time of Injury .934  
Firefighter- Helmet Line Used At Time of Injury .930  
Firefighter - Coat (Turnout) Worn At Time of Injury .906  
Firefighter - Boots Worn At Time of Injury .891  
Firefighter - Gloves Worn At Time of Injury .841  
Firefighter - Face Shield Used At Time of Injury .801  
Firefighter - Breathing Apparatus Used At Time of Injury .654  
Firefighter - Other Eye Protection Used At Time of Injury 

  
Firefighter Status 

  
Firefighter - Bunker Suit Worn At Time of Injury 

  
Fire Fighting Years of Experience 

 .944 
Age of Victim 

 .931 
Height of Firefighter 

 .920 
Weight of Firefighter 

 .918 
Firefighter - Protective Hood Worn At Time of Injury 

 -.700 

Table 12      Component Structure Matrix for Buildings 

We choose top four variables from each principle components as the influential factors 
identified. These influential factors are:  

1. Firefighter - Helmet Worn At Time of Injury 
2. Firefighter - Helmet Line Used At Time of Injury 
3. Firefighter - Coat (Turnout) Worn At Time of Injury 
4. Firefighter - Boots Worn At Time of Injury 
5. Fire Fighting Years of Experience 
6. Age of Victim 
7. Height Firefighter 
8. Weight Firefighter 

 

4.3 MAIN INFLUENTIAL VARIABLES ON FIRE INCIDENTS  

The objective of this analysis is to identify the main influential factors that have impact on fire 
incidents based on the data provided. The source data is the incident dataset, which has a total 
of 467,927 records with 136 variables. We adopted the similar approach as described in the 
previous section.  
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Record Selection and Exclusion 

The incident dataset contains fire incident records with different property types. Two main 
classes of properties involved in fire incidents in the past ten years are residential and 
transportation equipment. The dataset has about 29% of incident records for residential 
buildings and about 37% of incident records for transportation equipment (Table 13). 
Transportation equipment is a very different property class from residential building. Causes of 
fire for Transportation equipment should be studied separately. Since our focus is on buildings, 
records of transportation equipment class (Table 13 – code 8000) were not extracted.  

In addition, in the incident dataset, three other classes of property have different risk 
characteristic in fire incident involvement. These classes are mercantile (Code 5000), industrial 
manufacturing (Code 6000) and storage (Code 7000). The records of these classes were not 
extracted, either. 

Finally, the unspecified class (9000) and the unknown class (0000) are not included because 
they provide no additional information. Therefore, 153,570 records (32% of total records) are 
extracted from the incident dataset for our analysis. 

Code Classification Valid Cumulative 
1000 Assembly 2.77% 2.77% 
2000 Institutional 0.58% 3.35% 
3000 Residential 28.84% 32.19% 
4000 Business & personal service 0.63% 32.82% 
5000 Mercantile 1.87% 34.69% 
6000 Industrial manufacturing companies 1.68% 36.37% 
7000 Storage properties 3.50% 39.87% 
8000 Special property & transportation equipment 36.78% 76.64% 
9000 Miscellaneous property 6.83% 83.47% 
0000 Unknown, undetermined, not applicable, not available 16.53% 100.00% 

Table 13    Property Classification and Incidents Percentage 

Variable Selection and Exclusion 

Although there are 136 variables in the dataset, majority of them is irrelevant to either direct 
causes of fires or intensity of fire incidents. Such variables are in three categories: 

• Incident Information (24 variables) 

• Fire Loss Details (5 variables) 

• Social Domain Information (56) 

The variables in these three categories were not included in analysis. There are a dozen 
variables with 100% missing values. They were also excluded from the analysis. 

The data of remaining 36 variables are included for analysis in order to identify variables that 
are more influential.  
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The Kaiser-Meyer-Olkin (KMO) test is performed and the test result is 0.628. The Bartlett's test 
of sphericity is also performed on the dataset and it yields statistical significance of 0.000. 
These test results indicate that the chosen data are suitable for variable reduction analysis. 

Eigenvalue Calculation for Variances 

From Table 14, last seven components contribute less than a half percent of the total variance 
explained. Furthermore, individual contribution from the top ranked component to the total 
variance explained is not significant. The top 13 components in total that have eigenvalues 
greater than one contribute only 69% to the total variance explained. Even the top two 
components do not contribute much. This indicates that potentially more components are 
required to explain the variance. The Scree plot (Fig 3) validates it. 

Component Total 
% of 

Variance Cumulative % 
1 4.066 11.293 11.293 
2 3.620 10.055 21.349 
3 2.847 7.908 29.257 
4 2.198 6.105 35.362 
5 2.061 5.725 41.087 
6 1.579 4.386 45.473 
7 1.530 4.250 49.723 
8 1.377 3.824 53.547 
9 1.315 3.652 57.199 

10 1.186 3.295 60.494 
11 1.133 3.148 63.642 
12 1.009 2.804 66.446 
13 1.007 2.798 69.245 
14 .983 2.731 71.975 
15 .967 2.686 74.661 
16 .929 2.582 77.243 
17 .885 2.459 79.702 
18 .833 2.315 82.017 
19 .809 2.247 84.264 
20 .761 2.114 86.378 
21 .726 2.016 88.395 
22 .704 1.957 90.352 
23 .622 1.727 92.079 
24 .588 1.633 93.712 
25 .572 1.590 95.302 
26 .553 1.537 96.839 
27 .508 1.411 98.250 
28 .461 1.279 99.530 
29 .118 .329 99.858 
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30 .018 .051 99.909 
31 .011 .029 99.938 
32 .008 .021 99.959 
33 .007 .018 99.978 
34 .005 .013 99.991 
35 .002 .007 99.997 
36 .001 .003 100.000 

Table 14    Initial Eigenvalues for 36 variables 

Fig 3 shows that there is not clear ‘elbow’ turning point until 28~29 on x-axis. This ‘smooth’ 
downhill curve does not give clear indication of a ‘cut-off’ point. 

 

Fig 3    Scree Plot for 36 Components (Incident Dataset) 

Removing less informative variables will potentially improve this situation. The key question is 
to decide which variables to remove from the list. Our strategy is the below:  

• Remove variables that provide inadequate information due to high percentage of 
missing values or ‘unknown’ values; and  
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• Remove variables that provide redundant information 

Table 15 shows missing value analysis result. Variables that possess more than 60% missing 
values were excluded from the further analysis (highlighted in the Table 15). 

One exception was the removal of Method of Fire Control & Extinguishment (Contmeth) due to 
both high percentage (56.7%) of missing values and ‘outliers’ (extreme high values). 

Some variables provide similar information. For example, three variables, Property Class, 
Property Sub-group, and Property Group provide similar information. In order to reduce 
redundancy, we intended to keep only one of them. Since Property Group provides sufficient 
information for our analysis, we only kept Property Group in our analysis and the other two 
property related variables were dropped. 

The following four pairs of variables were processed in the same approach: 

1. Major Occupancy Group (Majocgrp) was retained while Major Occupancy (Majocc) was 
excluded; 

2. Material First Ignited Group (Matergrp) was retained while Material First Ignited 
(Material) was excluded; 

3. Act or Omission Group (Actomgrp) was retained while Act or Omission (Actorom) was 
excluded; and 

4. Area of Origin Group (Origgrp) was retained while Area of Origin (Origin) was excluded. 

After the variable selection analysis, 24 variables in total were retained for the next round of 
computational analysis. 

  N Mean Std. Deviation 

Missing No. of Extremes 

Count Percent Low High 
Propgrp 153,570 2,832.62 588.566 0 0.0 12,963 0 
Propclas 153,570 3,075.82 541.381 0 0.0 12,963 1,116 
Propsubg 153,570 3,045.78 538.132 0 0.0 12,963 901 
Igniobj 

153,570 358.40 346.452 0 0.0 0 0 

Majocc 
448,327 49.71 42.036 19,602 4.2 0 0 

Majocgrp 467,929 175.42 285.789 0 0.0 0 53,123 
Genconst 198,598 5.62 3.199 269,331 57.6 0 0 
Yearcons 143,106 578.51 895.331 324,823 69.4 0 0 
Height 431,511 5.47 49.042 36,418 7.8 0 1,078 
Flrarea 208,538 5.03 3.343 259,391 55.4 0 0 
Numbocc 385,908 1.74 3.141 82,021 17.5 0 8,769 
Riskvalc 55,851 2,111,356.86 46,380,243.501 412,078 88.1 0 147 
Manprot 

434,553 2.65 3.547 33,376 7.1 0 0 

Sprinpro 
464,095 3.93 3.808 3,834 0.8 0 0 
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Autodet 
434,553 3.07 3.871 33,376 7.1 0 14,374 

Outprot 148,354 1.80 1.775 319,575 68.3 0 9,026 
Energy 208,538 2.48 2.814 259,391 55.4 0 4,890 
Matergrp 467,929 4,142.76 3,797.296 0 0.0 0 0 
Material 457,989 459.38 407.939 9,940 2.1 0 0 
Actorom 467,929 310.69 329.540 0 0.0 0 41,985 
Actomgrp 467,929 2,747.06 2,999.523 0 0.0 0 42,025 
Origin 

467,929 538.71 374.990 0 0.0 0 0 

Origgrp 467,929 4,950.24 3,691.906 0 0.0 0 0 
Levelor 444,493 6.42 15.912 23,436 5.0 0 12,092 
Fireext 389,001 1.72 2.927 78,928 16.9 0 32,160 
Damext 93,566 4.57 2.808 374,363 80.0 0 0 
Dollossc 

222,469 32,857.90 440,613.398 245,460 52.5 0 865 

Detect 
434,553 12.29 26.707 33,376 7.1 0 47,456 

Transalm 
427,655 5.49 2.648 40,274 8.6 22,250 0 

Action 339,095 2.31 1.856 128,834 27.5 0 13,191 
Perform 444,493 2.73 3.771 23,436 5.0 0 0 
Contmeth 202,432 39.73 23.185 265,497 56.7 0 10,535 
Methdgrp 467,929 156.76 231.353 0 0.0 0 22,452 
Impact 284,886 58.75 48.300 183,043 39.1 0 0 

Table 15    Missing Value and Extreme Value Statistics 

Re-perform KMO Test and Bartlett's Test 

KMO test was re-performed to check the validity of the new dataset. The test result is 0.745, 
which shows a significant improvement. According to Kaiser’s proposed measurement, this 
number is in middle level. The Bartlett's test of sphericity was also re-performed on the new 
data set and it yields statistical significance of 0.000, which indicates that we can do variable 
reduction based on the new dataset. 

Eigenvalues and variance explained were calculated and the Scree plot (Fig 4) was generated 
for the new dataset. Our component selection criterion in this analysis was to choose those 
components whose eigenvalues are greater than one. This criterion allows us choose seven 
principle components (Table 16). 
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Fig 4    Scree Plot for 23 Components (Incident Dataset) 

Table 16 illustrates the seven principle components with their loaded variables, from which the 
influential variables can be inferred.  

Variables Component 

1 2 3 4 5 6 7 
Initial detection .884       
Building height .811       
Ground floor area .723       
Majocgrp -.610     .546  
General construction  

       
Energy causing ignition (form of heat) 

 .750      
Fuel or energy associated with igniting object 

 .705      
Actomgrp 

 .678      
Matergrp 

 .646      
Extent of fire 

       
Sprinkler protection 

  .812     
Manual fire protection facilities 

  .769     
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Performance of automatic extinguishing equipment 
       

Origgrp 
   .684    

Ignobgrp 
   .677    

Level of origin 
   .592    

Automatic fire detection system 
    -.640   

Number of occupants 
    .543   

Impact of smoke alarm activation on occupant 
response/ evacuation        
Dollar loss - total property and contents 

       
Transmission of alarm to fire department 

       
Propgrp 

     .870  
Action taken 

      .714 
Methdgrp             .696 

Table 16    Principle Components and their Variable Loadings  

Table 17 lists the influential variables identified by the quantitative analysis. The factors are 
listed in the order of importance (from high to low). 

Factors Variables 

Building  Initial detection 
 Building height 
 Ground floor area 
 Major Occupancy Group 

Outbreak of Fire  Energy causing ignition (form of heat) 
 Fuel or energy associated with igniting object 
 Act or Omission Group 
 Material First Ignited Group 

Protection Features  Sprinkler protection 
 Manual fire protection facilities 

Fire Origin  Area of Origin Group 
 Igniting Object Group 
 Level of Origin 

Detect  Automatic fire detection system 
 Number of occupants 

Property   Property Classification Group 
 

Control  Action taken 
 Method of Fire Control & Extinguishment Group 

Table 17    Variables with Greater Influence on Building Fire Incidents 
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Residential Building Fire Incidents 

Our analysis is specifically focused on residential buildings. Data was extracted from the 
incident dataset, 134,959 cases in total. The KMO test produces the measure at 7.57, which is 
an indicator of good data suitability and adequacy. The Barlett’s test shows that the significance 
level is 0.000, which allows us to do variable reduction for the dataset. The total number of 
variables in the analysis is 24. The choice of variables is the same as the previous sections, 
except for one variable, property classification group. Values of this variable (property 
classification group) caused computing errors. Instead we use a similar variable, Property 
Classification Subgroup. 

The identified influential variables are listed in Table 18. 

Factors Variables 

Building  Initial Detection 
 Major Occupancy Group 
 Building Height 
 Ground Floor Area 
 General Construction (As Related To Property Classification) 
 Automatic Fire Detection System 

Outbreak of Fire  Energy causing ignition (form of heat) 
 Fuel or energy associated with igniting object 
 Act or Omission Group 
 Material First Ignited Group 

Protection Features  Sprinkler protection 
 Manual fire protection facilities 

Fire Origin  Area of Origin Group 
 Igniting Object Group 
 Level of Origin 

Detect  Number of Occupants 
 Dollar Loss - Total Property and Contents 

Control  Action taken 
 Method of Fire Control & Extinguishment Group  

Auto-Control  Performance of Automatic Extinguishing Equipment 

Table 18    Variables with Greater Influence on Residential Fire Incidents 

 

Several variances can be observed by comparing Table 17 with Table 16: 
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• General Construction and Automatic Fire Detection System are listed in the building 
factor and considered more influential. General Construction was not an identified 
variable for general buildings. 

• Performance of Automatic Extinguishing Equipment is another newly added variable to 
the list. So is the dollar loss. 

 

4.4 MAIN INFLUENTIAL VARIABLES ON SPREAD OF FIRES  

Our objective is to identify main influential variables that are relevant to spread of fires. 
Artificial Neural Networks (ANN), a machine learning methodology, is applied in our analysis. A 
new binary variable (Spread) was created to reflect the categories, with zero representing non-
spread and one representing spread. The value assignments are based on the values of the 
variable Extent of Fire (Fireext). The details of the variable are provided in Table 19. 

Values   Extent of Fire 

1   Confined to object of origin 
2 

 
Confined to part of room/area of origin 

3 
 

Confined to room of origin 
4 

 
Confined to floor level of origin 

5 
 

Confined to building of origin 
6 

 
Extended beyond building of origin 

7 
 

Confined to roof 
8 

 
Not applicable - vehicle or outside area 

9 
 

Extent of fire – unclassified 
14 

 
Spread beyond room of origin 

15 
 

Multi-unit dwelling – Spread beyond room of fire origin, same floor, outside unit 
16 

 
Multi-unit-dwelling – Spread beyond room of fire origin, same floor, separate unit 

17 
 

Spread beyond floor of fire origin, different floor 
18 

 
Spread to entire structure 

20 
 

Spread beyond suit or apartment, same floor 
21 

 
Spread to additional suit or apartment, same floor 

0 
 

Extent of fire - unknown 
Blank   Data element not available in jurisdictional system 

Table 19    Codes of Extent of Fire 

From Table 19, codes 1, 2, and 3 are considered as non-spread. Codes 8, 9, 0, and blank are 
considered as ‘unknown’ value. The rest codes are considered as spread. The records were 
excluded when value of the Extent of Fire is 8, 9, 0, or Blank. Spread is the dependent variable 
for the classifier. 

The source data was extracted from the dataset used to identify main influential variables in 
Section 4.3. Records with missing values were filtered out. 90,597 records in total were 
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included. The records were randomly divided into two sets: training set and testing test. 
Training set had 70% of the data and testing set had 30% of the data.  

The overall accuracy of the ANN model based on the training set is 79.3% and the overall 
accuracy based on the testing set is 78.8%. The area under the curve (Spread = 1) is 0.869; the 
area under the curve (Spread = 0) is also 0.869. All these measures indicate that this ANN 
model is an adequate model to discover the pattern in the data. 

In the computation process, ANN model computes the ‘weight’ that each variable contributes to 
the prediction during its formation. We call the relative weight of each variable as relative 
importance and use them to create a normalized importance plot. The normalized importance 
plot allows us to visualize importance of those variables on a single chart (Fig 5) below. 

In Fig 5, the left scale is the measure of real number (importance) and the right scale is the 
measure of relative proportion. The highest importance is defined as one (100%) and the 
remaining are calculated based on its proportion. 

The eighteen variables stand on the x-axis with their labels on the bottom of the figure. These 
eighteen variables are ranked from the highest to the lowest (left to right) in the order of their 
importance.  
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Fig 5   Relative Importance of Variables on Spreading Fires 

Studying Fig 5 allows us to learn which variables are more important to spread of a fire. The 
following is a list of the eighteen variables. 

1. METHDGRP – Method of Fire Control & Extinguishment 
2. ACTION – Action Taken, referring to the action taken to combat the fire 
3. ORIGGRP – Area of Origin (Group), referring to the specific use or occupancy of that part 

of the property where the fire originates 
4. MATERGRP – Material First Ignited (Group), referring to is the actual material ignited 

which brings about the fire condition. 
5. IGNOBGRP – Igniting Object (Group), is the actual equipment, device or item which 

brings about ignition. 
6. HEIGHT – Building Height 
7. MAJOCC – Major Occupancy 
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8. ACTOMGRP – Act or Omission (Group), is a set of circumstances precipitated by human 
acts (something is done) or human omissions to act (something which has not been 
done). 

9. FUELERGY – Fuel or Energy Associated with Igniting Object 
10. MANPROT – Manual Fire Protection Facilities 
11. MAJOCGRP – Major Occupancy Group 
12. AUTODET – Automatic Fire Detection System 
13. DETECT – Initial Detection, referring to the means by which the fire incident was first 

detected. 
14. SPRINPRO – Sprinkler Protection 
15. LEVELOR – Level of Origin, referring to the floor or area where the fire originated. 
16. FLRAREA – Ground Floor Area (in m2) 
17. ENERGY – Energy Causing Ignition, referring to the energy which associates the Igniting 

Object with the Material First Ignited. 
18. PROPGRP – Property Classification Group 

Conclusion 

We used principle component analysis and other statistical methods to analyze cases of 
firefighters’ injuries. The dataset used for this analysis is victim dataset. As a result, eight 
variables: Firefighter - Helmet Worn At Time of Injury, Firefighter - Helmet Line Used At Time 
of Injury, Firefighter - Coat (Turnout) Worn At Time of Injury, Firefighter - Boots Worn At Time 
of Injury, Fire Fighting Years of Experience, Age of Victim, Height Firefighter, Weight 
Firefighter, from the victim dataset are identified as main influential variables to firefighter 
injury. 

We used similar approach to analyze cases of residential fire incidents. The dataset used for 
this analysis is incident dataset. As a result, eighteen variables: Initial detection, Building 
height, Ground floor area, Major Occupancy Group, Energy causing ignition (form of heat), Fuel 
or energy associated with igniting object, Act or Omission Group, Material First Ignited Group, 
Sprinkler protection, Manual fire protection facilities, Area of Origin Group, Igniting Object 
Group, Level of Origin, Automatic fire detection system, Number of occupants,  Property 
Classification Group, Action taken, Method of Fire Control & Extinguishment Group, from the 
incident dataset are identified as main influential variables to residential fire incidents. 

We used artificial neural networks to model spread of fires. The dataset used for this analysis is 
also incident dataset. Overall accuracy of the model is 79%. The model generates relative 
importance for each variable’s influence on spreading of building fires. 



 
35 

 

Acknowledgments 

This work is supported by the Canadian Association of Fire Chiefs. The authors want to thank 
Mr. Zhaowei Yang and Prof. Michael Chen in York University for the support.  

 References 

[1] Chun Kit Lau, Kin Keung Lai, Yan Pui Lee, and Jiangze Du, Fire risk assessment with 
scoring system using the support vector machine approach, Fire Safety Journal, 78, 
2015, pp.188–195. 

[2] Ali Asgary, Ali Sadeghi Naini, and Jason Levy, Modeling the risk of structural fire 
incidents using a self-organizing map, Fire Safety Journal, 49, 2012, pp. 1–9. 

[3] K. P. Vadrevu, A. Eaturu, and K. V. S. Badarinath, Fire risk evaluation using multicriteria 
analysis—A case study, Environmental Monitoring and Assessment, 166, 2010, pp. 223–
239 

[4] A.P.Harpur, K.E.Boyce, and N.C.McConnell, An investigation into the circumstances 
surrounding fatal dwelling fires involving very young children, Fire Safety Journal, 61, 
2013, pp.72–82. 

[5] Mavis Duncanson, Alistair Woodward, and Papaarangi Reid, Socioeconomic deprivation 
and fatal unintentional domestic fire incidents in New Zealand 1993–1998, Fire Safety 
Journal, 37, 2002, pp.165–179. 

[6] Charles, R. Jennings, Social and economic characteristics as determinants of residential 
fire risk in urban neighborhoods: A review of the literature, Fire Safety Journal, 62, 
2013, pp.13–19. 

[7] Chris Hastie, Rosalind Searle, Socio-economic and demographic predictors of accidental 
dwelling fire rates, Fire Safety Journal, 84, 2016, pp.50-56. 

[8] E. Cloutier, and D. Champoux, Injury risk profile and aging among Quebec firefighters, 
International Journal of Industrial Ergonomics, 25, 2000, pp. 513-523. 

[9] Carla Britton, Charles F. Lynch, James Torner, Corinne Peek-Asa, Fire characteristics 
associated with firefighter injury on large federal wildland fires, Annals of 
Epidemiology, 23,  2013, pp.37-42. 

[10] Deena S. Rosalky, David Hostler, Heather E. Webb, Work duration does not affect 
cortisol output in experienced firefighters performing live burn drills, Applied 
Ergonomics, 58, 2017, pp.583-591. 

[11] H. Hotelling, Analysis of a complex of statistical variables into principal components. 
Journal of Educational Psychology, 24, 1933, 417–441, and 498–520. 

[12] Simon S. Haykin, Neural networks: a comprehensive foundation. Prentice Hall, 1999.  



 
36  

[13] The Canadian Centre for Justice Statistics, Sustainability of the National Fire 
Information Database – Next Steps, September 2017. nfidcanada.ca/statistics-canada-
report/ 

[14] Henry F. Kaiser, John Rice, LITTLE JEFFY MARK IV, Educational and Psychological 
Measurement 1974, 34, 1974, p111 – p117. 

[15] George W. Snedecor, and William G. Cochran, Statistical Methods, Eighth Edition, Iowa 
State University Press, 1989. 

[16] www.surefirecpr.com/rescuer-needs-rescued-introducing-firefighter-cpr/ 

 

  

http://nfidcanada.ca/statistics-canada-report/
http://nfidcanada.ca/statistics-canada-report/


 
37 

 

 Author Biographical Information 

Zijiang Yang received the M.A.Sc. and Ph.D. degrees in industrial engineering from the 
University of Toronto, Toronto, ON, Canada, in 1999 and 2002, respectively. Currently, she is 
a full Professor at the School of Information Technology, York University, Toronto, ON, 
Canada. Her current research interests include prediction, classification, performance 
analysis in the financial service industry, and data mining algorithms. She has published 
papers in IEEE Transactions on Neural Networks, Communications in Nonlinear Science and 
Numerical Simulations, Information Sciences, IEEE Transactions on Systems, Man, and 
Cybernetics--Part C: Applications and Reviews, IEEE Transactions on Engineering 
Management, Knowledge-Based Systems, Chemometrics and Intelligent Laboratory Systems, 
Expert System with Applications, Computers and Operations Research, Applied Mathematics 
and Computation, Mathematical and Computer Modeling, Journal of the OR Society (JORS), 
Annals of Operations Research, Engineering Computations, and other peer-reviewed journals. 

Youwu Liu received the M. Sc. degree in computer science and MBA degree from Loyola 
University Chicago, Chicago, IL, USA, in 1993 and 1995, respectively. He received the Ontario 
graduate diploma in data analytics from Centennial College, Toronto, ON, Canada, in 2013. 
Currently, he is a graduate student at York University, Toronto, ON, Canada. His current 
research interests include mathematical modelling, machine learning, artificial neural 
networks, and statistical analysis in real world applications. 

 

 

 

 

 

 

           



 
38  

 


